Philadelphia University		Approval date:
Faculty: Science	PHILADELPHIA	Issue:
Department:	UNIVERSITY	
Biotechnology and	THE WAY TO THE FUTURE	Credit hours: 2
Genetic Engineering	COMIA UTO	
Academic year 2022-2023	Course Syllabus	Bachelor

Course information

Course#	Course title		Prerequisite	
0240482		Applied Molecular Biology		
Course type		Class time	Room #	
☐ University Requirement ☐ Faculty Requirement		9:45-10:35 am	2901	
		ST		
⊠ Compulso	ory			

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Prof. Raida Khalil	914	ext. 2250	TW: 11:35am- 15:00 pm	R_khalil@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method			
□ Physical	□ Physical □ Online □ Blended		
	Learning Model		
Precentage	Synchronous	Asynchronous	Physical
			100%

Course Description

For the Fourth Year, this module serves as a significant (Mandatory) departmental course. The transmission of genetic information from DNA through RNA to proteins is referred to as the "Central Dogma" of biology. There are several existing and future applications to business, academia, and research within each of these processes. The techniques employed in diverse biotechnology applications, such as the treatment of human diseases, agricultural production, and resolving Molecular Aspects, will be thoroughly studied in this advanced course in applied molecular biology. Additionally, new ideas from research in Molecular Biology tools and genomics will be presented. The majority of these recently released, peer-reviewed research journal papers, which will also serve as the foundation for student presentations, will be used to explain all of these quickly moving issues.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes		
	Knowledge			
K1	Demonstrate an understanding of how DNA can be artificially manipulated to modify an organism's structure and/or function	K _P 1		
K2	Understand the many different applications of molecular biology	K _P 3		
К3	Expose to latest technology tools in molecular biology conducted in many disciplines	K _P 1		
	Skills			
S1	Critique and professionally present primary literature articles in the general Molecular Biology technologies	S_P4		
S2	Assigned original article will hand in to students week ahead the group discussion	S _P 4		
S3	learn how to present and discuss molecular biology research data to an audience.	S _P 2		
	Competencies			
C1	critically review the fundamental and key concepts of Molecular Biology and gene cloning	C_P1		
C2		C_P1		

Learning Resources

Course textbook	Molecular Biology" 5 th edition, 2012 - Author(s)/Editor(s): Robert Weaver Publisher: Mc Graw Hill ISBN: 978-0-07-131686
	Molecular Cell Biology Author(s): Lodish, A. Berk et al, 9 th edition (2021) Publisher: W. H. Freeman and Company ISBN: 978-1-4641-87445 (8 th edition)
	CRISPR Gene Editing: Methods and Protocols Authors: Aarhus, Denmark and Yonglun Luo ISSN 1064-3745 ISSN 1940-6029 (electronic) Publisher: Springer, part of Springer Nature 2019
Supporting References	Recent literature(suggested readings and web sites required for assignments through Philadelphia library resources,
Supporting websites	https://pubmed.ncbi.nlm.nih.gov
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other

Meetings and subjects timetable

Week	Торіс	Learning	Tasks	Learning
(s)		Methods		Material
	Discuss Course Syllabus	lectures +	Revision	
	Revision:	learning	Background	Chapter 3
1	Producing a protein from DNA involves	platform	related to topic	Weaver
	both transcription and translation	+ Discussion	Assessment	5 th edition
	The Nature of Genetic Material	lectures +	Assessment	CI 4 2
2	-Molecular cloning, methods and tools for	learning		Chapter 2
4	-studying genes and gene activity -Introduction to gene manipulation: DNA	platform + Discussion		Weaver
	cloning, restriction enzymes and physical	+ Discussion		4 th edition
	maps			
		lectures +	Assessment	Chapter 4
3		learning		Weaver
	Molecular Cloning Methods	platform + Discussion		Chapter 6 Lodish
		+ Discussion Lecture	Assessment	Chapter 4
		problem	Article	Weaver
4		solving based	assigned	Chapter 6
		learning		Lodish
	Molecular cloning, , expression, Vectors	Lectures+	Presentation	Chapter 4
5		, problem	According to	Weaver
3	PCR, Real time PCR	solving based	assigned	Chapter 6
		learning	schedule	Lodish
	Molecular tools for studying genes and	Lectures+	Assessment	
6	gene activity	, problem	Article	
	Introduction to gene manipulation: DNA	solving based	assigned	
	cloning, restriction enzymes and physical	learning		
7	maps			
	Overview: Transcription	Lectures+	Assessment	
_	&posttranscriptional modifications,	, problem	Article	
8	Blotting techniques	solving based learning	assigned	
	Midterm	icarining		
		Lectures+	Assessment	
		, problem	Article	
9		solving based	assigned	
	Mapping transcripts:-Primer extension, S1	learning		
	mapping	Collaborative		
	Quantifying transcripts	learning	A aaa	
10	Nuclear run off and ON,	Lectures+	Assessment	
10	Measuring transcription in vivo	, flipped Class	Article assigned	
11	Overview: Translation	Lectures+	Assessment	
·····	Western Blot Two- dimensional gel	, problem	Article	
	electrophoresis-Proteomics	solving based	assigned	
12	Immune assay	learning		
<u> </u>	Overview: Control of gene expression			

	Assaying DNA-protein interaction			
13	Overview: Control of gene expression Foot –Printing Linker scanning analysis Reporter genes: luciferase,GUS,GFP CAT	Lectures+ , problem solving based learning	Assessment Article assigned	
14	Microarray RNA polymerase structure as a specificity Factor the function of σ Binding of RNA polymerase to promoters	Lectures+ , problem solving based learning	Assessment	
15	DNA replication: Detailed Mechanism speed of Replication initiation Elongation: the β clamp	Lectures+ , problem solving based learning flipped Class	Article assigned Video	
16	Final Exam			

^{*} includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology		
Educated videos, Links related to topics; Learning Analysis Journals ; presentations prepared by students		
Communication skills		
Discussion assigned articles by collaborative learning		
Application of concepts learnt		
At the end of each topics students will expose to the medical and pharmaceutical applications of different concepts of Molecular Biology		

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	% 30	Week 8	K1 and C1
Various Assessments *	% 30	Each week	All
Final Exam	% 40	Week 16	All
Total	%100		

^{*} includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**		
Knowledge					
K1	Demonstrate an understanding of how DNA can be artificially manipulated to modify an organism's structure and/or function	Lecture problem solving based learning	Quiz videotaped assignment		
К2	Understand the many different applications of molecular biology	Lecture problem solving based learning ollaborative learning	Assignment Quiz		
К3	Expose to latest technology tools in molecular biology conducted in many disciplines	Lecture problem solving based learning ollaborative learning	Assignment Quiz Presentation		
	Skills	•			
S1	Critique and professionally present primary literature articles in the general Molecular Biology	problem solving based learning illaborative learning	Quiz videotaped assignment		
S2	Assigned original article will hand in to students week ahead the group discussion	flipped Class	assignment Quiz videotaped assignment		
S3	Predict the consequences of various types of mutations on gene expression and organism's viability.	flipped Class collaborative learning	Assignment Presentation		
	Competencies				
C1	Critique and professionally present primary literature articles in the general Molecular Biology technologies	collaborative learning	Quiz		

^{*} includes: Lecture, flipped Class, project- based learning , problem solving based learning, collaborative learning

Course Polices

^{**} includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Policy	Policy Requirements				
Passing Grade	The minimum passing grade for the course is (50%) and the minimum				
	final mark recorded on transcript is (35%).				
	Missing an exam without a valid excuse will result in a zero grade				
	to be assigned to the exam or assessment.				
Missing	• A Student who misses an exam or scheduled assessment, for a				
Exams	legitimate reason, must submit an official written excuse within a				
	week from the an exam or assessment due date.				
	• A student who has an excuse for missing a final exam should submit				
	the excuse to the dean within three days of the missed exam date.				
Attendance	The student is not allowed to be absent more than (15%) of the total hours				
	prescribed for the course, which equates to six lectures days (M, W) and				
	seven lectures (S,T,R). If the student misses more than (15%) of the total				
	hours prescribed for the course without a satisfactory excuse accepted by				
	the dean of the faculty, s/he will be prohibited from taking the final exam				
	and the grade in that course is considered (zero), but if the absence is due				
	to illness or a compulsive excuse accepted by the dean of the college, then				
	withdrawal grade will be recorded.				
Academic	Philadelphia University pays special attention to the issue of academic				
Honesty	integrity, and the penalties stipulated in the university's instructions are				
	applied to those who are proven to have committed an act that violates				
	academic integrity, such as: cheating, plagiarism (academic theft),				
	collusion, and violating intellectual property rights.				

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
K _p 1	Understand and recognize the biochemical, molecular and cellular structure of organisms and biological systems.	Applied Molecular biology	Comprehensive exam	students will achieve 68% and more based on assessment rubric

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment
Kp1	Comprehensive questions (10 marks included in the final exam)

Assessment Rubric of the Program Learning Outcome

criteria	score				
	4	3	2	1	
Concept	The answers given indicate a thorough understanding of the concept	The answers given indicate a less comprehensive understanding of the concept	The answers given indicate misconceptions	The answers given indicate the student are not understand the concept	
Comprehensive	The answers given indicate the ability to relate one information to another, comprehensively	The answers given indicate the ability to relate one information to another, partly	The answers given indicate less ability to relate one information to another	The answers given indicate not comprehensive	
Language structure	The answers given in accurate ,short ,and clear sentences	The answers given in accurate and short sentences ,but clear	The answers given in short sentences, but not accurate nor clear	The answers are not given in accurate , short , and clear sentences	